Physical Review Letters
108,
194102,
2012.

We propose a graphical notation by which certain spectral properties of complex systems can be rewritten concisely and interpreted topologically. Applying this notation to analyze the stability of a class of networks of coupled dynamical units, we reveal stability criteria on all scales. In particular, we show that in systems such as the Kuramoto model the Coates graph of the Jacobian matrix must contain a spanning tree of positive elements for the system to be locally stable.

doi: 10.1103/PhysRevLett.108.194102

permanent link: http://www.for1748.de/papers/DoEtAl2012